-
Wine Jobs
Assistant Manager
Assistant Cider Maker
Viticulture and Enology...
-
Wine Country Real Estates
Winery in Canada For Sale
-
Wine Barrels & Equipment
75 Gallon Stainless Steel...
Wanted surplus/ excess tin...
Winery Liquidation Auction...
-
Grapes & Bulk Wines
2022 Chardonnay
2023 Pinot Noir
2022 Pinot Noir
-
Supplies & Chemicals
Planting supplies
Stagg Jr. Bourbon - Batch 12
-
Wine Services
Wine
Sullivan Rutherford Estate
Clark Ferrea Winery
-
World Marketplace
Canned Beer
Wine from Indonesia
Rare Opportunity - Own your...
- Wine Jobs UK
- DCS Farms LLC
- ENOPROEKT LTD
- Liquor Stars
- Stone Hill Wine Co Inc
Is Climate Change Ruining Wine Corks?
Jul 23, 2014
(Discovery) - Wine lovers might treasure the oaky, full-bodied taste of a cabernet sauvignon or the light and fruity aroma of a pinot grigio. But if the bottle is stopped with a low-quality cork, they can kiss that meticulously cultivated flavor goodbye.
Many people may only worry about corks when it's time to pop the Champagne, but some experts are worried about wine cork quality, which has been mysteriously in decline for almost 20 years.
Corks are made from the bark of Quercus suber trees, commonly called cork oaks, which grow only in southwest Europe and northwest Africa. More and more low-quality cork trees with thin bark are sprouting up.
How scientists think rising temperatures and increased exposure to ultraviolet, or UV, light brought on by climate change may be behind chemical changes in the bark of cork oaks.
"There are several factors like climate change, landscape changes and the dry seasons getting longer that could be causing the decline," Rita Teixeira from the University of Lisbon, told Live Science. "The change in bark quality may be the trees' way of adapting."
Bark acts as the protective outer layer on trees that protects the plant from drought and shields against radiation. Cork oaks have been growing thinner and more porous layers of bark. Cork producers need bark that's at least 27 millimeters (1 inch) thick to make a good cork, but most of the trees are now producing bark between 3 mm and 10 mm (0.1 inches and 0.4 inches), Teixeira and colleagues write in their study, which was published June 22 in the Journal of Experimental Botany.
To figure out what might be causing the changes, Teixeira and a team of researchers analyzed genes in the bark of five high-quality cork trees and five low-quality cork trees growing in Portugal. The scientists discovered that heat shock proteins are essential to the bark of high-quality cork trees. These proteins help the tree grow normally even under stressful conditions like drought and high temperatures, and promote cell division that makes the bark grow thicker.
Comments: